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ABSTRACT 
This paper recommends extensive, human-like preparation for 
joint action. Given the substantive differences in the ways that 
people and robots perceive and reason, it argues that this 
knowledge be shared explicitly. Moreover, it assigns responsibili-
ties to each agent based on their strengths and weaknesses. The 
approach detailed here deliberately explores to acquire knowledge 
about the specific task it confronts and the skills of the agents in 
that setting. It then exploits that knowledge to support perfor-
mance.  

Categories and Subject Descriptors 
[Human-centered computing]: Collaborative and social compu-
ting theory, concepts and paradigms --- computer supported coop-
erative work.  

General Terms 
Design, Reliability, Experimentation, Human Factors 

Keywords 
joint action, discovery, scribe, task allocation 

1. INTRODUCTION 
In joint action, a team of agents works together on a common 
task. Each agent’s skill at the actions it undertakes has considera-
ble impact on the team’s performance. The thesis of this paper is 
that joint action produces a better outcome when the agents un-
cover and share knowledge beyond the problem description. The 
approach described here poses questions about the objects in-
volved, and has the agents find and share answers. This paper pos-

tulates roles for agents based on what they do best. Its principal 
contributions are an explicit, robot-supported representation for 
inter-agent communication, and a human-guided discovery period. 
Together, they support subtask allocation that maximizes task ex-
pertise, in preparation for joint action.  

The scenario in Table 1 prepares intelligent agents for joint action 
[1]. It is intentionally reminiscent of how two people might ad-
dress a challenging assembly task together, for example, building 
an unwieldy piece of IKEA furniture. They open the package, lay 
out the contents, and look at the picture of the final product. The 
directions identify the parts and a sequence of actions to execute. 
Then the people’s respective skills (e.g., reading, spatial cogni-
tion, accuracy, agility, strength, dexterity) come into play as they 
work through the assembly together. Each step in Table 1 poses a 
question in preparation for the agents’ pursuit of a common goal. 
These questions and their answers are the focus of this paper.  

We address our thesis in the requested framework for this work-
shop, which we call task T. A person and a robot are asked to con-
struct a pile of four cubes in a pre-specified order, and to top the 
pile with a pyramid. Figure 1 shows the start state and the two 
possible goal states. If it is within reach, an agent can take an ob-
ject (i.e., a cube or a pyramid) from the table or from the pile, put 
an object on the pile, give an object to the other agent, or support 
the pile so that it is less likely to fall. Both agents know the loca-
tion of each object and which of them can reach which objects. At 
any point in time, an object is on the table, in the pile, or held by 
(in the grip of) one of the agents.  

The crucial differences between the two agents are highlighted 
here by consideration of a simplified task. Tʹ′ is a thought experi-
ment where all blocks are reachable and the robot is an (unembod-
ied) computer. For the person alone, Tʹ′ is simple, because people 
bring to bear commonsense and real-world experience. Naïve 
physics dictates that the pile must be constructed from the bottom 
up. The person would stack the bottom cube first, then the next, 
and so on. Stack is a macro-action, the sequence of actions <take, 
put>. The person may never consciously plan at all, but merely 
produce reactive stack intentions as she responds to differences 
between the start state and goal state. To execute a stack, the per-
son expands it to <take, put>. For the computer alone, however, 
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Table 1: A scenario in preparation for joint action 

1. What do and don’t we know?  Initialize board   
2. What do we want to achieve? Post goal state 
3. How shall we do that? Post intentions 
4. How can we act? Action repertoire 
5. What can we detect? Sense  
6. How hard is this? Discover  
7. How shall we proceed? Subtask allocation  

 
 (a)  (b)  (c) 

Figure 1: (a) the start state; (b) and (c) the goal states. 



even Tʹ′ is complex. The computer lacks the person’s ability to fo-
cus attention on cube 1 first, so it might flounder about in a large 
search space. Of course, if the computer had preconditions and 
add-delete lists for each action, it could plan. An ordered, AB-
STRIPS-like sequence might emerge: pile cube 1, cube 2, cube 3, 
cube 4, and finally a pyramid [2]. Then the computer could ex-
pand each of those steps, either in advance or as it constructs the 
pile. That requires the ability to transform an action into a se-
quence of micro-actions (e.g., take = <reach, grasp, lift>). 

The original task, T, requires joint action because neither agent 
can perform it alone; neither of them can reach all the objects re-
quired for the pile. The person may not initially even consider this 
difficulty, but react to it only when it arises. If the computer plans, 
however, it will recognize that the person must put cubes 1 and 3 
or give them. (A partial plan would accommodate this.)  

Task T also requires real-world action. People learn operationali-
zations of the actions for T (the physical movements expected to 
achieve them) in infancy, and practice them repeatedly on a broad 
range of objects. Usually, a person will be unaware of how she 
performs these actions and will assume that they succeed. Without 
human guidance, however, a robot’s world experience can be un-
certain and error-ridden. Operationalization chooses a complex 
sequence of motor commands that must be calculated and then 
transmitted explicitly. For example, consider reach on an accessi-
ble object. Control must choose which arm to use, how to maneu-
ver that arm into place, and how to confirm by sensors that it has 
arrived there. Without confirmation, accumulated errors from a 
sequence of actions can lead to failure. While the person is opti-
mistic, the robot is, of necessity, wary. 

Thus task T involves two extremely different agents. The person 
is reactive, with good motor skills that have been compiled out, 
and a repertoire of macro-actions with multiple ways to expand 
them. Moreover, the person has the ability to contend with unan-
ticipated failures and is accustomed to joint action, at least with 
other people. If the pile topples or a block is not within reach, all 
is not lost. The robot, in contrast, plans, calculates quickly and ac-
curately, and confirms its actions carefully. The more actions, mi-
cro-actions, and operationalizations available for them, the longer 
the robot will take to decide.  

To facilitate this discussion, we elaborate slightly on task T, as 
follows. Each agent has two hands. Each object has a location in 
space whose value can be determined by the action find. The val-
ue returned by find is in an allocentric coordinate system for the 
table, augmented by special values for situations where it is in an 
agent’s hand, in the pile P, or missing (i.e., not found). The predi-
cate reachable(l) specifies whether an agent can reach location l.  

As described, task T leaves open many key questions. Some ad-
dress what the agents can do physically, including their reach, 
strength, and agility. Others address the agent’s preferences and 
crucial but unspecified properties of the objects. The answers to 
these questions are productive only if they are public, that is, 
known to both agents. A mechanism that shares those answers is 
therefore central to our approach. It is described in the next sec-
tion to answer the first four questions in Table 1. Section 3 con-
siders what can be sensed or discovered in advance, and Section 4 
discusses how to assign subtasks to agents.  

2. PUBLIC KNOWLEDGE 
To share the knowledge highlighted by Table 1, we envision a 
representation that is a public knowledge board (henceforward, 
simply the board). An example appears in Figure 2, where three 
cubes have already been stacked and the robot is holding cube 4 
with its first hand. The board contains both Table 1’s questions 
and some of their answers. It records the agents’ shared world 
state, their action repertoire, their goal, their approach, and their 
percepts. A post is an item on the board; each is either a fact (with 
a fixed value) or a fluent (with a changeable one). Initially, all 
facts and fluents are posted, the latter without values (step 1 of the 
scenario). Here, facts are the label and shape of each object, and 
the number of hands each agent has; fluents are each object’s lo-
cation, what is in each hand, and what is within reach of each 
agent. 

The board includes the goal (step 2 of the scenario). Our approach 
addresses one subgoal (in boldface) at a time. Subgoals already 
accomplished are checked off, and the current subgoal appears in 
boldface. There is also a sketch, an ordered list of macro-actions 
to achieve the goal (step 3 of the scenario). The sketch is a com-
promise between the robot’s reliance on detailed plans and the 
person’s reactivity. Each macro-action can be thought of as an 

Facts Fluents Goal Sketch Status 
cube(Obj1) location(Obj1) = P (R) holding(HH1) = pile (H) location(Obj1) = P √ stack(Obj1) √ Agent R 
cube(Obj2) location(Obj2) = P (R) holding (HH2) = pile (H) location(Obj2) = P √ stack(Obj2) √ take(Obj4) √ 
cube(Obj3) location(Obj3) = P (R) holding (RH1) = Obj4 (R) location(Obj3) = P √  stack(Obj3) √ put(Obj4, P) (RH1) 
cube(Obj4) location(Obj4) = (2,6) (R) holding (RH2) = nil (R) location(Obj4) = P stack(Obj4)   
pyramid(Obj5) location(Obj5) = (1,9) (R) … location(x) = P  stack(x)  Agent H 
pyramid(Obj6) location(Obj6) = (3,7) (R) reachable(P) = T (H)  & pyramid(x)   & pyramid(x) support 
hand(human,HH1) … reachable(P) = T (R)     
hand(human,HH2)  …     
hand(robot,RH1) 
hand(robot,RH2) 

       

 
Actions 

 
Preconditions 

 Reliability % 
H        R 

Speed 
H        R 

Dexterity 
H        R 

take(o,hand) reachable(location(o)), graspable(o), liftable(o),  
holding(hand) = nil 

 98.90  98.03 VG (H2) G (H1) G (H2) VG (H1) 

put(o,hand) holding(hand) = o, reachable(P)  65.03 99.53 … … … … 
give(o,hand) holding(hand) = o, reachable(k),   … …     
support holding (hand1) = pile,  holding(hand2) = pile        
find(o) holding (hand1) = nil,  holding(hand2) = nil        

 
Figure 2: The board midway through task T. The robot R is about to put cube 4 on the pile P while the human H supports it. 



unelaborated chunk of a plan. This deliberate lack of detail is mo-
tivated by the likelihood of error during task execution. For sim-
plicity, the sketch here is STRIPS-like [3], but it could be from a 
planner or the person.) Accomplished macro-actions are also 
checked. The macro-action that addresses the current subgoal ap-
pears in boldface, and is expanded into an action sequence, with 
the current action in boldface. This answer to step 3 of the scenar-
io dynamically focuses on a macro-action and an action sequence. 

The board also includes the agents’ action repertoire (step 4 of the 
scenario) with preconditions. (Note that there is no agent argu-
ment. An action is considered from the perspective of the agent 
that undertakes it.) Preconditions are based either on the person’s 
commonsense input or the robot’s first pass at operationalization. 
Figure 2, for example, indicates that if agent a is to put object o on 
the pile at P, it must be holding o and be able to reach P. Initially, 
preconditions are posted by the person, but the robot can save 
them for use in future tasks.  
In the joint action envisioned here, before an agent undertakes an 
action, it announces its intent. Because both agents can err, it is 
necessary to confirm that every action produces the desired result 
(e.g., that the robot’s hand is holding the block after a take). Con-
firmation appears as checks on the board in Figure 2. This would 
be a stylized language, for example, “Stacking cube 3. Success.”  

The board is the agents’ shared worldview. It makes their inten-
tions explicit and identifies actions underway in a display under-
stood by both agents. Thus, it requires continual updates. The 
agent best suited for this task of scribe is the robot. Whatever the 
robot’s internal representation for that knowledge, it can quickly 
direct error-free output there. Moreover, unlike a person, a robot 
is untroubled by repetition and can repeatedly scan its environ-
ment accurately and tirelessly. The scribe senses, confirms, and 
posts the results of all actions and the achievement of subgoals. It 
also posts any new or changing values (e.g., preconditions, flu-
ents), as well as the information discovered in the next section.  

3. DISCOVERY 
Two kinds of discovery are envisioned for step 6 of the scenario: 
computational inference and empirical investigation. For the first, 
an agent may sense or calculate the value of a fluent. For example, 
although locations are originally unknown and fluent, any agent 
may detect or confirm locations with find. As another example, 
given the reachable predicate and the currently posted location l 
of object o, each agent can calculate whether or not reachable(l) is 
true for that agent. If so, that value is posted with the agent who 
provided it. In Figure 2, the robot has located all the objects, and 
each agent has reported on its own hands. For empirical investiga-
tion, however, it is necessary to consider agents’ expertise.  
The expertise of an agent with respect to an action, is its ability to 
accomplish that action quickly and accurately [4]. Ideally, each 
agent would be expert at each action it undertakes. Nonetheless, 
an agent may execute an action poorly for all instantiations (e.g., 
the person’s hands may be too unsteady to pile objects) or the 
agent may have difficulty only with a particular class of instantia-
tions (e.g., the robot finds pyramids may be awkward for the robot 
to grasp). In the worst case, an action may damage the task objects 
(e.g., the robot applies a grip so strong that it crushes pyramids).  

The second kind of discovery is an empirical investigation of the 
agents’ expertise. Rather than make assumptions about an agent’s 
ability or an object’s properties, we propose that each agent dis-
cover its own expertise levels for each action. First, each agent 
performs a sequence of brief tests of its ability to execute each ac-
tion. The agent instantiates an action on different blocks and at-

tempts it alone, with each hand and with both hands together. 
(Ideally, this exploration would be with objects identical to those 
in the task, all within reach of both agents.) A key element of dis-
covery here is generalization over success or failure. If an action 
fails, for example, is it the fault of the designated hand? or is the 
object simply too heavy to lift with one hand? or with both hands? 
To obtain a reliable estimate, an agent that has difficulty with a 
particular instantiation should attempt it more times than one 
where she consistently succeeds. Once these tests are complete, 
agents attempt together actions that they failed alone. For exam-
ple, if the person could not pile cubes four high by herself, she 
would try to do so while the robot supported the pile.  

Purely random exploration, of course, may produce little of value. 
During discovery, therefore, the person, with her store of com-
monsense world knowledge, should assume the role of guide. The 
guide describes what she attempts, and the robot imitates (e.g., “I 
can stack blocks five high. Can you?”) The robot as scribe can al-
so document action sequences that the person frequently uses dur-
ing discovery. For example, if the robot mentions that the person 
often follows a take with a put on the pile, the person could say, 
“Yes. Let’s call that stack” and so a macro-action is detected and 
learned. The sketch is therefore not posted until discovery is com-
pleted. 

Discovery produces expertise ratings. Possible facets of expertise 
include speed (elapsed time per attempt), dexterity (amount of 
movement), and reliability (likelihood of success). Some of those 
values, on common scales, appear in Figure 2. In addition, be-
cause further information on the agents’ expertise may emerge 
once discovery is over and the task is underway, the robot as 
scribe should modify expertise values to reflect its recent perfor-
mance. Although discovery is of necessity empirical and therefore 
subject to error, it provides useful information for subtask alloca-
tion, as described next. 

4. SUBTASK ALLOCATION 
As envisioned here, joint action assigns each subtask of the sketch 
to an agent. This subtask allocation is a constrained optimization 
problem along two dimensions: whether the agent is likely to exe-
cute the subtask properly, and the expertise with which it will do 
so. Consider, for example, the macro-action stack(Obj3). Initially, 
the person is the obvious agent for this because she can reach cube 
3 and the robot cannot. If, however, her hands are unsteady and 
(as the expertise ratings indicate) she knocks over the pile quite 
often when she tries to put a block on it, the robot may be a better 
choice. If the robot is to stack cube 3, however, the person must 
give it to the robot first, a modification to the sketch.  

Without an overseer, subtask allocation requires a mutually 
agreed upon policy. One possible allocation policy is an agree-
ment that each agent is the actor whenever it can reach the loca-
tions involved. That would suffice in T until conflict arose over 
the pyramid. It is possible, however, to learn an allocation policy. 
FORR, a general architecture for learning and problem solving, 
solicits opinions from heuristics called Advisors, and maximizes a 
weighted combination of those opinions to select an action [5]. 
These weights reflect the Advisors’ accuracy and are learned by 
reinforcement, based on experience [6]. A subtask allocation poli-
cy could be learned similarly. One Advisor would support the 
agent with the greatest probability of success on a subtask, anoth-
er the most dexterous, and another the fastest. There would also 
be an Advisor that considered whether the agent could satisfy the 
preconditions immediately. Once weights were learned, voting 
would allocate subtasks based on experience.  



5. DISCUSSION 
In task T, joint action is a necessity because neither agent can 
reach all the cubes alone. Another motivation for joint action is 
that the agents’ ability to work in parallel or to bring greater ex-
pertise to different subtasks might improve performance on some 
metric (e.g., speed or resource consumption). Both cases benefit 
from knowledge about the abilities of both agents in the context of 
the current task, as supported by discovery. 

The notion of a scribe is a preliminary step toward parallel execu-
tion during joint action. Once subtasks are assigned, another way 
to parallelize is to interleave agents’ respective action lists with a 
scheduling algorithm. Parallelization could also permit an agent to 
do two things at once, for example, steady the tower for the other 
agent with one hand while it picks up the next object it is assigned 
to stack. This approach, however, is fraught with internal conflict 
for a multi-armed agent, as well as for motion planning with re-
spect to the other agent. This is why, in Figure 2, find’s precondi-
tions forbid the agent to do so unless its hands are empty. 

The description of discovery provided here is only a first step. 
People often envision more imaginative macros. Perhaps, for ex-
ample, an agent could create a sub-pile of multiple objects (e.g., 
cube 4 atop cube 3) and then move the sub-pile onto the pile. 
Whether it is possible to move a sub-pile successfully, and wheth-
er it is worth the risk, are the kind of questions young children ad-
dress in their play. How to encourage such discovery and the 
length of time to devote to it are open questions. 

Support is necessary only if there is a risk that a put will fail. A 
conservative approach would be to have one agent support the pile 
whenever the other executes a put. As in Figure 2, this can be im-
plemented as a precondition on put that the other agent is holding 
the pile with both hands. A more thoughtful approach would be to 
have an agent support the pile whenever discovery indicated that 
the agent about to put is likely to fail, within some agreed upon 
threshold. Discovery could also address whether an agent could 
adequately support the pile with one hand, and where support 
should be placed (e.g., on opposite sides of the pile? near the ver-
tical center?) for the best result. 

Support of the pile is an example of cautious behavior. The degree 
of caution during joint action should be specified in advance as a 
tolerance for unsuccessful actions. Discovery may address this 
too, so that a pyramid-crushing robot will be forbidden to take any 
pyramid, and an unsteady person will never stack at all. The board 
should also record other relevant properties of the objects (e.g., 
temperature, slipperiness). 

Figure 2 is a metaphor, and should not be taken as a recommenda-
tion for logic as a representation. The board is intended to be ac-
cessible to both agents, but how to interpret its contents (e.g., 
reachable, location) should be agent-specific. For example, the 
agents in T represent space differently — the person’s view is 
egocentric and qualitative, while the robot’s is a real-valued, allo-
centric map [7]. The board may have to provide both. Moreover, 
how often to update the board, at what level of detail, and how to 
resolve differences of opinion about posts there are open ques-
tions.  One way to address disagreement on the value of a fluent 
would be to consider how both agents might confirm, as people 
often do, the values of facts. 

A post on the board, with its source, is an expression of an agent’s 
belief. If the agents use the same computation (e.g., for speed), 
there should be no disagreement. If a fluent is sensed, however, 
there is the possibility that different values result. This leads to 
questions of authority. Who for example, knows best about what 
an agent is holding? The agent who feels the object or the one 
who observes it?  One approach is to assign agents authority over 
specific fluents. Another is to have them both sense again, possi-
bly in a different way, and compare the results. 

If an action fails (e.g., the pile falls), the robot will correct the 
board accordingly. This includes unchecking accomplished sub-
goals and sketch entries so that joint action can resume. Some re-
lated issues remain, however. The assumption that one agent per-
forms an action (e.g., they do not lift together) is restrictive. 
Moreover, the assumption that an agent, once assigned a task, ac-
cepts it and tries until it succeeds, may be unrealistic. The prefer-
ence of the agents for a subtask may also be relevant to its alloca-
tion (e.g., the person may want to place the pyramid as a final, 
celebratory step, or the robot may need to recharge). In addition, 
several decisions in T should be the subject of negotiation, which 
is outside the scope of this paper. These include the location P of 
the pile, the subtask allocation policy, and the acceptable risk 
threshold for failure.  

In summary, preparation for joint action assigns the roles of guide 
and scribe to the person and the robot, to capitalize on their re-
spective strengths. Discovery gathers useful, empirical 
knowledge, and shares that knowledge through the board with 
both agents, to guide subtask allocation attuned to the agents’ 
demonstrated expertise. Together the agents can then address their 
task more effectively, together.  
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